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Passive scalar fluctuations with and without a mean gradient: A numerical study
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We report a numerical study of a passive scalar advected by a random incompressible Gaussian veloci-
ty field. The calculations are carried out on a two-dimensional square lattice. Depending on the two di-
mensionless parameters in the problem, the scalar fluctuations at the center can be Gaussian, exponen-
tial, or stretched exponential. This is true not only when the passive scalar is subjected to a uniform
mean gradient but also true when a new alternating boundary condition is used which results in a mean
scalar profile that has a vanishing gradient in the central region.

PACS number(s): 47.27.—1i, 02.50.—r, 05.40.+j

I. INTRODUCTION

Recent experiments [1] on Rayleigh-Bénard convection
in low-temperature helium gas revealed that the probabil-
ity density function (PDF) of temperature fluctuations
measured at the center of the cell is non-Gaussian and
close to exponential (sometimes high-pas filtering [2] is
required to get the exponential) when Rayleigh number is
large ( <10%). This discovery of nearly exponential tem-
perature fluctuations in convection has stimulated many
recent studies on PDF’s [3-10].

In their work, Pumir, Shraiman, and Siggia (PSS) [5]
suggested that buoyancy effects are not necessary for the
exponential tails in these experiments. Using a one-
dimensional phenomenological model equation for pas-
sive scalar PDF’s, they obtained steady-state solutions
with exponential tails in the case where the scalar has a
uniform mean gradient. Although their model is not sys-
tematically derived, it is argued to contain the physics of
random advection and mixing. Thus they predicted that
random advection and mixing plus the existence of a uni-
form mean gradient provide a mechanism for production
of exponentials. Their prediction has recently found both
numerical [11] and experimental support [12,13]. How-
ever, its relevance to the observations mentioned above
[1] is not clear since the central region in the convection
experiment is well mixed with the temperature change
concentrated in two thermal boundary layers near the top
and the bottom of the cell [14]. One is thus led to the fol-
lowing natural question: Can passive scalar fluctuations
still possess exponential tails in the absence of a local
mean gradient?

In this paper, we report results from a numerical study
that addresses this question. We shall see that the answer
is positive and that random advection and diffusion can
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produce exponential tails even in the absence of a local
mean gradient. As a result, we believe that the same
physics produce the exponential PDF’s observed in the
convection experiments [1].

II. PROBLEM

We study the random advection and diffusion of a pas-
sive scalar. The governing equations are

%_HIVTZDOV?T , (1a)
V-u=0, (1b)

where T'(x,t) is a passive scalar, e.g., the temperature
field and u(x,?) is the velocity field with D, being the
molecular diffusivity. We restrict ourselves to two di-
mensions where the incompressible velocity field is ex-
pressed using the stream function &é(x,?): u,=3,4,
u,= —9,¢. To mimic a turbulent velocity field, we mod-
el the stream function ¢(x,¢) (and thus the velocity field)
as a Gaussian random field with correlation length &,
correlation time 7, and the noise strength ¢,,.

Instead of solving the full advection-diffusion problem
in Eq. (1), we resort to a simplified discrete model which
is coarse grained at the scale of the velocity correlation
length &. That is, we solve Eq. (1) on a two-dimensional
square lattice with a lattice spacing equals to §. The
coarse-graining effectively renormalizes the molecular
transport coefficient so we replace D, by an effective eddy
diffusivity D. Using the following transformations:
t—7t, x—>EX, u—ugu (uy=¢y/§), we rewrite Eq. (1a)
(with D, replaced by D) in a dimensionless form

T (i,j) .. e ..
-aTL-+Ku(1,])-V,-jT——C 'WAT(i,j), )
with two parameters K and C, where K is the Kubo num-
ber [15] identically equal to uyr/& and C =£2/(D 7). We
use the finite-difference method to integrate Eq. (2) in
time. A small time step Az is used with the random ve-
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FIG. 1. PDF’s for different values of C at

K =1 for the fixed-difference boundary condi-
tion. (a) C=2, Gaussian PDF; (b) C=2,
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PDF with exponential tail; (c) C =9, nearly
pure exponential PDF; (d) C =%, stretched-
exponential PDF (the stretched exponent
B~0.65, see text for definition).
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locity field u (or the random stream function ¢) at each
lattice site being updated every N (=7/At) time steps.
The system size is N; XN, and N,=N,=31 is used in
this work. The boundary condition for both the velocity
and the temperature is periodic in the horizontal direc-
tion (i direction), and the velocity field is no-slip on both
the top and bottom boundaries (j =0 and N,-+1).
Several different boundary conditions on temperature in
the j direction are employed. The first one is the usual
“fixed-difference” condition with T7(i,j =0)=0 and
T(i,j=N,+1)=1. With this boundary condition, the
scalar has a uniform mean gradient in the j direction. In
order to obtain a mean scalar profile that has a vanishing
gradient at the center of the system, we use a new “alter-
nating boundary condition.” Finally, to relate to the con-
vection experiment, we use a third “random boundary
condition.” These boundary conditions will be described
in detail below. For each of these boundary conditions,
we measure temperature as a function of time and study
the statistics of fluctuations at the center of the system
[+(N;+1),LN,+1)]. Each time series consists of at
least 150 000 points.

III. RESULTS

A. Fixed-difference boundary condition

We first consider the situation in which a fixed temper-
ature difference is applied across the system, i.e.,

T(i,j=0,t)=0, T(,j=N,+1,0)=1,

i=1,...,N,. )

For all the values of K and C studied, the mean tempera-
ture profile is found to be linear in the j direction with a
gradient of 1/(N,+1). At a fixed value of K, the PDF is
Gaussian for small values of C and becomes non-
Gaussian by developing exponential tails as C is in-
creased. When C is increased further, the exponential
part of the PDF extends towards the center of the distri-

bution, and at C =C,, the whole PDF becomes almost
exponential. For C>C,, the PDF eventually becomes
stretched exponential, i.e., P(8T)~exp[ — 4 (8T)P] with
B<1, where 8T =T —(T) is the fluctuation around the
time-averaged mean. In Fig. 1 we show PDF’s at
different stages for K =1 (which is essentially the case
considered by PSS, where 7 was taken to be ~§&/ug).
The fluctuations are normalized by the standard devia-
tion 0. We repeat the calculations for different values of
K’s and construct the phase diagram shown in Fig. 2.
We divide the whole parameter space into three regions
which correspond, respectively, to Gaussian (G) PDF’s,
PDF’s with exponential tail (ET), and stretched-
exponential (SE) PDF’s. In determining the boundaries
between different regions, we have used the kurtosis
F=((8T)*)/((8T)*)% and the three regions are
classified by the following criteria: F =3-3.2 for the G
region, 3.2 <F <6 for the ET region, and F > 6 for the
SE region. In Fig. 3, we plot the kurtosis F as a function
of Cfor K =1.
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FIG. 2. Phase diagram in the {K,C} plane for the fixed-
difference boundary condition.
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FIG. 3. F/3 versus C for K==1 for the fixed-difference
boundary condition.

B. Alternating boundary condition

To create the situation where the scalar has a vanish-
ing mean gradient at the center, we introduce a new alter-
nating temperature boundary condition

T(i,j=0,0)=T(,j =N,+1,0)=10(—1)'*! |
i=1,...,N,. ()

As shown in Fig. 4, the resulted mean temperature profile
is quite different from before. It is almost flat for most of
the system except for regions near the top and the bottom
boundaries. We find that the mean profile only changes
slightly upon variation of K and C. As before, we study
the statistics of temperature fluctuations at the center.
Although the mean gradient vanishes at the center, we
find a phase diagram qualitatively similar to the previous
case: at a fixed value of K, the PDF becomes non-
Gaussian for large enough values of C. In Fig. 5, we plot
F as a function of C for K =1. Comparing to Fig. 3, the
deviation of F from 3 occurs more abruptly and at a
larger value of C. For this alternative boundary condi-
tion, when the PDF’s become non-Gaussian, they are
also more skewed, thus F, by itself, may not be a good
quantitative measure of how non-Gaussian the PDF is.
Figure 5 clearly demonstrates that a uniform mean gra-
dient is not necessary for generating non-Gaussian pas-
sive scalar fluctuations. Moreover, since the mean tem-
perature gradient vanishes at the center, we have shown
that exponential tails can still exist in the absence of a lo-
cal mean gradient. In Fig. 6, we compare three PDF’s
for K =1 and C =10: two measured at the center, one
for each of the two boundary conditions, fixed-difference
and alternating [Egs. (3) and (4)], and the third one off the
midplane, measured at [L(N, +1),4(N,+1)] for the al-
ternating boundary condition Eq. (4). These results
therefore suggest that whether the statistics of the fluc-
tuations is Gaussian or not does not depend on the shape
of the mean scalar profile but is mainly determined by the
parameters K and C.

C. Random boundary condition

To relate to the convection experiments, we look at
another boundary condition

T(i,j =0,0)=T(i,j=N,+1,0)=n(i),
i=1,...,N;, (5

with 7 being a Gaussian random number of zero mean
and unit variance. This random boundary condition is
motivated by the fluctuating thermal boundaries ob-
served in experiments. Here the boundaries we have in
mind are not the top and bottom plates of the experimen-
tal cell but rather the top and bottom of the central well-
mixed region inside the cell. With this random boundary
condition, qualitatively similar results are again found as
can be seen from the plot of F versus C shown also in Fig.
5. Note that the values of F will change for different real-
izations of 7. In the actual experiment, the thermal
boundaries also fluctuate in time. It is therefore interest-
ing to study the effects of time variation in Eq. (5). How-
ever, if we simply update the boundaries randomly, we
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FIG. 4. Mean temperature profile for the alternating bound-
ary condition Eq. (4) with K =1 and C =10 (a) along the x
direction at y =4 (dashed line), y =8 (dotted line), and y =16
(solid line); (b) along the y direction at x =4 (dashed line), x =8
(dotted line), and x =16 (solid line). It is symmetric with
respect to the lines x =16 and y =16.
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FIG. 5. F/3 versus C with K =1 for the alternating bound-
ary condition Eq. (4) (squares) and the random boundary condi-
tion Eq. (5) (triangles).

will inevitably get Gaussian PDF’s as a result of averag-
ing over a large number of independent random condi-
tions. With no better clues to the actual dynamics of the
thermal boundaries, we study the time variation in the
following simple way: updating the boundaries every M
(=10,100, 1000, 10 000) time steps by adding a small ran-
dom number (of noise strength 0.001) to the previous
values. We find that the exponential tails still persist for
M = 1000, but the PDF becomes more Gaussian as M de-
creases.

IV. DISCUSSION AND CONCLUSIONS

We have studied numerically the problem of a passive
scalar advected by a random velocity field. Depending on
the two dimensionless parameters K and C in the prob-
lem, the PDF of passive scalar fluctuations can be Gauss-
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FIG. 6. Temperature PDF’s for K=1 and C=10. The
upper two PDF’s have been shifted upwards by 12 and 6, re-
spectively, and are measured at the center
(LN, +1 ),%(N »+1)], with the uppermost one using boundary
condition Eq. (3) and the lower one using Eq. (4). The lowest
PDF is measured at [ +(N, +1),3(N,+1)] using boundary con-
dition Eq. (4).

ian, non-Gaussian developing exponential tails, exponen-
tial, and even stretched exponential. This is true for all
the three different boundary conditions considered even
for the case in which the mean scalar profile has a vanish-
ing gradient at the center.

To put our results into perspective, we relate the pa-
rameters K and C to the Péclet number (Pe). With Pe
defined as u£/D,, we have Pe=KC (D /D,). On purely
dimensional grounds, one expects D=D,Pe” when
Pe>>1, with the exponent v depending on the topology
of the flow. Thus we get Pe=(KC)!/"""". For two-
dimensional, steady, incompressible, random flows, v was
derived [16] to be 13. This particular value may not ap-
ply in our case as our velocity field is not steady. Indeed,
determining v for different physical situations is nontrivi-
al and is a problem of its own interest [17]. Nevertheless,
it is well possible that even in our case, v is close to but
less than 1 and large KC implies large Pe. In real experi-
ments, a certain path in the {K,C} space is traced de-
pending on how Pe is varied.

Our results for the fixed-difference boundary condition
confirm PSS’s prediction [5] that in the presence of a uni-
form mean temperature gradient a ({T)=a +ay) and
with large enough Péclet number, the PDF should have
an exponential tail: P(8T)~exp(—|8T|/y) for
|8T|>>1. According to PSS, the length scale L, defined
by ¥ /a, should be equal to the velocity correlation length
&. However, in Fig. 7 we plot L/£ vs C for K =1 and
find that L /£ actually depends on C. It is less than 1 for
C <C, and approaches 1 as C—C,. In addition, the ap-
pearance of the stretched-exponential region beyond C,
is unpredicted by the phenomenological model of PSS.
These results suggest that the PSS model corresponds
only to the case when C is approximately C,. We should
mention that stretched-exponential temperature PDF’s
have not been reported in experiments, but if v is very
close to 1, then they can only be observed at very large
Péclet number.

Initiated by the work of PSS, two experiments [12,13]
have been performed to study passive temperature fluc-
tuations. In a wind tunnel experiment, Jayesh and
Warhaft [12] found exponential PDF’s when a mean tem-
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FIG. 7. L /& versus C for K =1 for the fixed-difference
boundary condition.
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perature gradient was maintained by differentially heat-
ing a set of parallel heating ribbons (a toaster) placed at
the entrance. To study the situation in the absence of a
mean gradient, they used an array of fine heated wires (a
mandoline) and observed PDF’s which are closer to
Gaussian (though skewed with “enhanced” tails on the
positive side). Since all the wires are equally heated, we
think that the mandoline may not be a good source of
temperature fluctuations. A better way may be to heat
the set of toaster ribbons alternately as in Eq. (4). It will
be interesting to see how the corresponding PDF’s look
like and whether they agree with what we have found. In
another experiment, Gollub et al. [13] studied tempera-
ture fluctuations in a fluid stirred by an oscillating grid.
A fixed horizontal temperature difference was maintained
across the experimental cell. Thus their experimental set-
up is close to the situation we have studied here [with
boundary condition Eq. (3)]. In particular, K is fixed
when the Reynolds number (Re) is increased so C is pro-
portional to Re! ™. They found that the PDF is Gauss-
ian when Re is small and becomes exponential when Re is
larger. We note here the close resemblance of their plot
of kurtosis as a function of Reynolds number (Fig. 6 in
their paper) to our Fig. 3. Again, it will be interesting to
study how the PDF changes when a different boundary
condition such as Eq. (4) is introduced.

In summary, we find that as long as there is a source of
scalar fluctuations, provided by the boundaries in some
ways, the PDF of a passive scalar undergoing random ad-
vection will have exponential tails whenever the Péclet
number is large enough. This is true no matter what the
shape of the local mean scalar profile is. It was men-
tioned in several papers [12,13] that exponential tails in
the absence of a mean gradient were observed before in a
spectral large-eddy simulation [18]. We would like to
point out that those PDF’s observed are transients while
ours are steady-state results and are therefore more
relevant to experimental observations. We therefore sug-
gest that the exponential PDF’s observed in convection
[1] are caused by the same physics: random advection
and mixing, which produce the exponential passive scalar
PDF’s observed here and in the passive scalar experi-
ments [12,13].

ACKNOWLEDGMENTS

We thank J. Carlson, L. P. Kadanoff, J. Langer, and F.
Liu for discussions. The work at Santa Barbara is sup-
ported in part by the National Science Foundation Grant
No. PHY89-04035. Y.T. would like to acknowledge sup-
port by the California Institute of Technology.

[1] F. Heslot, B. Castaing, and A. Libchaber, Phys. Rev. A
36, 5870 (1987); B. Castaing et al., J. Fluid Mech. 204, 1
(1989); M. Sano, X.-Z. Wu, and A. Libchaber, Phys. Rev.
A 40, 6421 (1989).

[2] X.-Z. Wu and A. Libchaber, Phys. Rev. A 45, 842 (1992).

[31Y. G. Sinai and V. Yakhot, Phys. Rev. Lett. 63, 1962
(1989).

[4] V. Yakhot, Phys. Rev. Lett. 63, 1965 (1989).

[5S] A. Pumir, B. I. Shraiman, and E. D. Siggia, Phys. Rev.
Lett. 66, 2984 (1991).

[6] H. Chen, S. Chen, and R. H. Kraichnan, Phys. Rev. Lett.
63, 2657 (1989); R. H. Kraichnan, ibid. 65, 575 (1990).

[7] Z.-S. She, Phys. Rev. Lett. 66, 600 (1991); Z.-S. She and S.
A. Orszag, ibid. 66, 1701 (1991).

[8] E. S. C. Ching, Phys. Rev. Lett. 70, 283 (1993).

[9]S. B. Pope and E. S. C. Ching, Phys. Fluids A 5, 1529

(1993).

[10] Y. Kimura and R. H. Kraichnan, Phys. Fluids A §, 2276
(1993).

[11] M. Holzer and A. Pumir, Phys. Rev. E 47, 202 (1993).

[12] Jayesh and Z. Warhaft, Phys. Rev. Lett. 67, 3503 (1991);
Phys. Fluids A 4, 2292 (1992).

[13]J. P. Gollub et al., Phys. Rev. Lett. 67, 3507 (1991); B. R.
Lane et al., Phys. Fluids A 5, 2255 (1993).

[14] A. Belmonte, A. Tilgner, and A. Libchaber, Phys. Rev.
Lett. 70, 4067 (1993).

[15] R. Kubo, J. Math. Phys. 4, 174 (1963).

[16] A. V. Gruzinov, M. B. Isichenko, and Y. L. Kalda, Zh.
Eksp. Teor. Fiz. 97, 476 (1989) [Sov. Phys. JETP 69, 517
(1989)].

[17] M. B. Isichenko, Rev. Mod. Phys. 64, 961 (1992).

[18] O. Metais and M. Lesieur, J. Fluid Mech. 239, 157 (1992).



